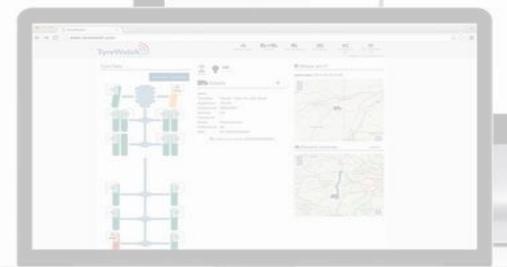
TyreWatch.com Platform Introduction


29th April 2021

Introduction

TyreWatch.com is an evolving platform developed over 5 years creating a digital tyre management platform to manage the wheel\tyre remotely on a connected vehicle.

The TyreWatch Team

Privately Owned

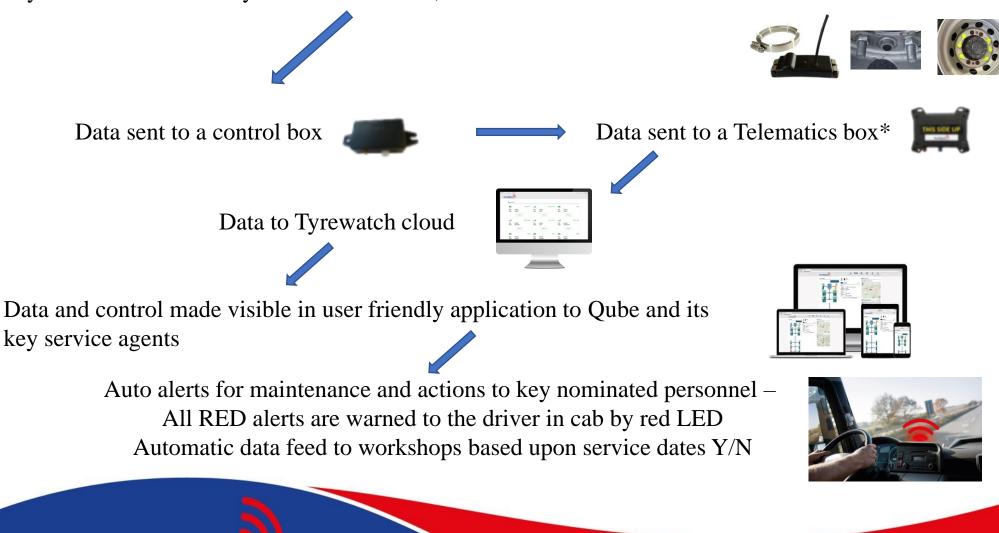
Introductions – The Team

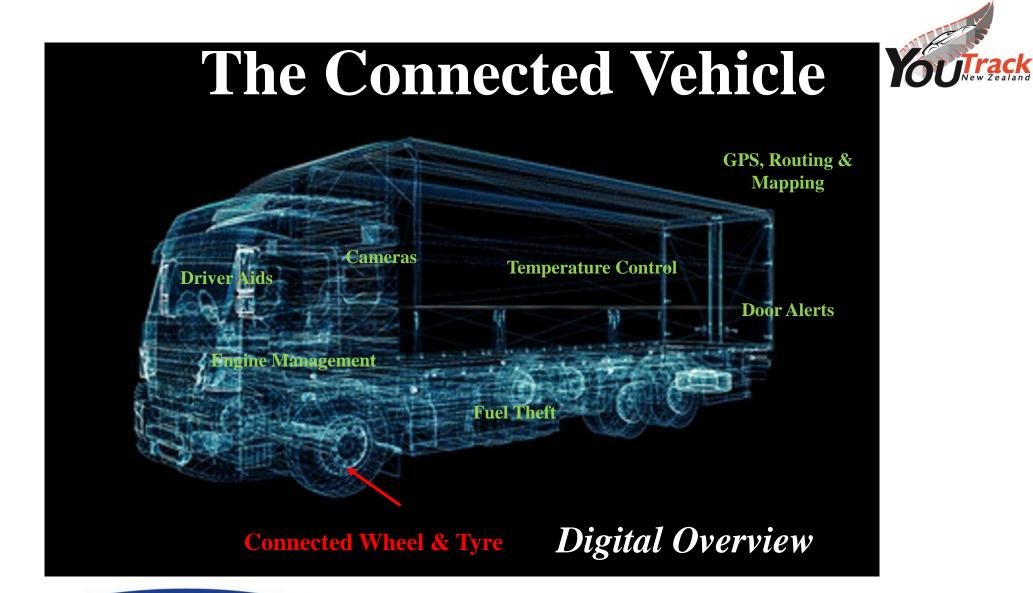
➢ Glenn Sherwood, 46 years in the tyre industry

➤ Mark Longden, 22 years in the automotive industry

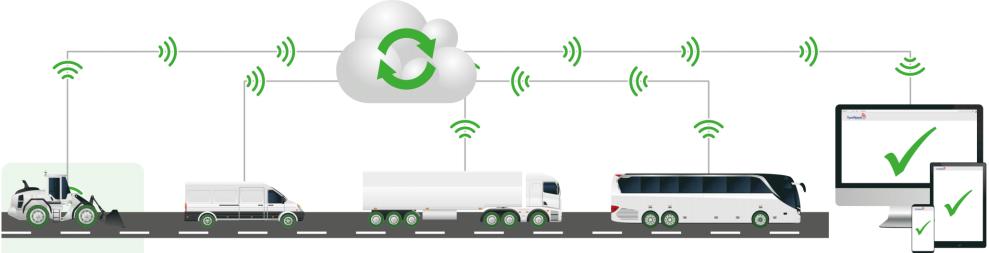
Peter Roffey, 32 years in the tyre industry

➤ Anne Parker, 25 years in the tyre industry


+ customer & technical support, field service support and data scientists


System Guide

Tyre Sensors – internally fitted to the wheel, and wheel loss sensors and brackets to the wheels


Tyre

Remote Monitoring

The Reasons

- ▶ 87% of HGV roadside breakdowns are caused by tyre failure
- > 40% of HGV road traffic accidents are caused by tyre failure
- ➢ 90% of tyre-related breakdowns are caused by under-inflation
- The average cost of a tyre-related roadside breakdown is £500 + intangibles
- \geq 20% of fleet truck tyres run at least 10% below optimum pressure
- 1 in 20 (5%) fleet truck tyres run at least 20% below optimum pressure
- ▶ 50% of fleet truck tyres run between 5% and 10% under-inflated

<u>The 4th highest cost is tyres, and it affects the highest cost,</u> <u>which is fuel and has the biggest environmental impact.</u>

The Benefits

Floot	Europie	LE68 FAT	Fleet	Example	GD19 FSY	First:	Example	T180
Depot:	Brighton		Depot	Havant		Depot:	Rainham	
	DETAILS			DETAILS			DETAILS	
Floot	Example	WU15 HSD	Floot	Example	HX19 NYY	Reet:	Example	ZZ57 UKK
Depot:	Manchester		Depot	Leeds		Depot:	DETAILS	
	UL INILU			0.000			DE INCO	
Floot	Dample	T900	Fleet	Example	T942	Piec	Example	T856
Depot:	Aylesbury		Depot	Warrington		Depot	Leicester	

Tyres naturally deflate by 2-3% every month without an effective tyre monitoring system. Fully connected autonomous systems,

- \succ Saves fuel between 1-2%,
- ▶ Reduces CO_2 emissions (2.68kg of CO_2 per 1 litre of diesel),
- ▶ Improving tyre life anywhere between 10-30%,
- Reduction in vehicle particulate emissions PM2.5 and PM10 from premature tyre wear.
- Saving 95% of tyre related breakdowns,
- Improving overall safety & compliance in the fleet,
- Improved vehicle uptime and utilization,
- Improved service and workshop savings in time and costs,
- ➢ Giving back control of the fleet.

Pro's & Con's of a TyreWatch Connected System_

	Ftondard Non Connected System	TuroWatch Connected System
A gnostia to tura brand	Standard Non-Connected System	TyreWatch Connected System
Agnostic to tyre brand	•	v
Agnostic to vehicle type	\checkmark	✓
Connected to telematics + integration	X	\checkmark
In-cab alert	\checkmark	\checkmark
Driver dependent	\checkmark	Х
24\7-365 automated alerts (email & SMS)	Х	\checkmark
Time saving on safety inspections	Х	\checkmark
Fuel saving	?	\checkmark
KPI reporting	Х	\checkmark
Reduction in roadside recovery	\checkmark	\checkmark
Reduction in tyre damage	?	\checkmark
Dynamic wheel security	\checkmark	\checkmark
Continuous remote monitoring	Х	\checkmark
Remote brake\hub temperature monitoring	Х	\checkmark
Brake\hub temperature critical alert	\checkmark	\checkmark
Predictive time to critical	Х	\checkmark
Driver anti-tamper monitoring	Х	\checkmark
False positive alerts	\checkmark	X
$\mathbf{N}_{\mathbf{r}}$	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0/

Note: Non-connected TPMS systems will alert when tyre becomes critical @ 20%.

Ongoing Development of the Platform

Current Features

- ✓ Pressure
- ✓ Temperature
- Predictive Time to Critical
- Remote Automated Monitoring
- ✓ Automated Alerts & Reports
- ✓ Environmental Impact Measuring CO₂

In Development in 2021

- Dynamic Vehicle Alignment (first trials April 2021)
- ➤ Wheel Security (first trials late 2021)
- Dynamic Environmental Impact in Measurement Tool PM2.10 – (late 2021)
- Predictive Tread Wear (first quarter 2022)

Technology & Industry Partners

TyreWatch & AlignWatch Technology Partners

SOLUTION DESIGN, CONNECTIVITY MATHEMATICAL MODELLING WHEEL SENSOR DESIGN AND SIGNAL PROCESSING

COMPUTATIONAL AND FE MODELLING

ARTIFICAL INTELLIGENCE

DYNAMON

BIG DATA ANALYTICS STANDARDISED TEST PROTOCOL

TyreWatch & AlignWatch Industry Partners

Live Demo

https://tyrewatch.ifmscloud.com/#/fleet/overview

Thank you

